Plug load management helps commercial buildings achieve energy reduction goals.

Plug load management lowers whole commercial building energy consumption by 10%, according to the National Renewable Energy Laboratory (NREL). Viewed individually – plug and process loads seem small and inconsequential to many. Yet plug loads represent the largest electrical end use in many buildings. The annual savings potential for US plug loads is approximately 1.6 Quads, which is equivalent to the energy usage of 16 million US households.

In the future, plug loads will represent an even larger percentage of whole-building energy usage. The percentage of whole-building energy attributed to PPLs is expected to increase from 40% to 49% by 2040, according to the DOE’s Office of Energy Efficiency & Renewable Energy (EERE). In contrast, HVAC and other major end uses will decrease during the same time period according to the projections.

Despite the large potential for energy savings – up to 40% per device – plug loads are not typically monitored or controlled, even in buildings controlling other end uses.  This is unfortunate because plug load management solutions install quickly and deliver immediate energy savings.

What is Plug Load?

Let’s start by defining “plug load.” Traditionally, plug load refers to devices that are plugged into 120V/15A outlets. Common loads include printers, copiers, TVs, coffee makers, charging carts, vending machines, TVs, beverage dispensers and projectors.  At Bert, we also offer control and metering solutions for larger inline loads such as window AC and PTAC units, hot water heaters, commercial refrigeration, exhaust fans and air handing units.

Why Do Plug Loads Use So Much Energy?

It is hard to imagine that small loads can have such a big impact on the building’s energy consumption. There are two reasons plug loads represent such a large portion of a building’s base load. First, plug loads are ”vampire devices,” meaning they consume energy – even when no one is using them. In fact, many plug loads consume almost as much energy nights and weekends as they do during daytime working hours.  Second, loads like window AC and PTAC frequently run all night long.

How Does Plug Load Management Save Money?

Commercial buildngs are empty almost 75% of the time.  Plug load management solutions monitor and control plug load energy usage, continuously recording energy usage and automatically turning loads off while buildings are empty.  Devices are turned off nights and weekends, eliminating overnight standby loads. Paybacks vary depending on the device controlled, but typically range from less 12 months to 5 years.

How Does Plug Load Management Work?

Plug  load management solutions use a combination of “smart” outlets, software and integration tools to manage devices and collect building data. Smart plugs and inline hardware collect data from connected devices and transmit it over the existing 802.11 Wi-Fi network for measurement, tracking and control purposes.  All Bert hardware is intelligent and IoT-ready.  Bert controls loads ranging from 120V/15A devices to 277V/20A circuits.

Bert integrates plug load systems into existing energy management systems whenever possible. Bert works with BACnet/IP building automation systems as well as web-based analytics and energy management systems.

Does Plug Load Control Make Sense for You?

Let Bert do the math for you. We enter your building types, sizes and kWh rates into our proprietary modeling tool.  The tool calculates the expected number and types of plug and inline devices by building.  Using the occupancy hours for each building, Bert estimates energy savings using standby load data from previous projects.

Implementing plug load control works best with an experienced partner.  Even though plug load energy savings is considered low hanging fruit, it represents a small piece of many performance contracts.  Therefore, ESCOs must be confident about their partners’ ability to quickly and efficiently deliver maximum energy savings before adding plug load control to a project.

At Bert, we know what we’re doing.  We created a structured installation process, designed for performance contracts, that has been refined after installing 40,000 Berts in 1,000 buildings.  We complete most projects within 6 – 8 weeks, keeping partners and users updated every step along the way.  This post highlights our approach to implementing plug load control.

Turnkey Plug Load Implementations Ensure Success

It’s a fact. ESCOs don’t have the time or energy to manage plug load projects.  Instead they rely on partners with the resources and expertise to manage the entire implementation for them.  ESCOs require turnkey solutions from vendors with the capability to handle everything, including audits, installations and integration services.

At Bert, we see ourselves as more than just a technology company.  We take complete responsibility for the entire project, from preliminary savings through measurement and verification.  In some projects, Bert performs the IGA audit and the hardware installation.  Other times, we train and manage partners selected by the ESCO.  Either way, we do not turn the system over until every Bert is named, grouped and scheduled and the post-installation savings report is created.

Details Matter When Implementing Plug Load

Projects require attention to details. Besides documenting the location and type of each load, it’s also necessary to identify locations that lack Wi-Fi coverage or have other issues preventing the installation of plug load control hardware.  Ideally, this data is shared with partners and end users throughout the project.  For instance, installers need the audit data before going on-site so they know where to go.  Performance contractors and end users want “as-built” documents reflecting up-to-the minute progress.

Cloud-based tools make it possible to keep track of the specifics.  In addition, information such as photos of hardwired inline devices can be shared real-time. Bert’s set of robust iOS and Android audit and installation tools facilitates data sharing. Besides providing instant access to the data, the technology allows Bert  to remotely monitor audits and installations, providing immediate assistance.

Provide easy-to-understand energy savings estimates

Everyone agrees the goal is delivering actual energy savings that are equal to the IGA savings estimate.  In a perfect world, IGA estimates would be identical to the post-installation savings reports. In reality, most projects have minor equipment changes.  Therefore, ESCOs and user must be able to easily compare the IGA and the final “as-built”.

Bert makes it easy by presenting all savings data in the same format.  Whether it’s a Preliminary Savings estimate, an IGA estimate, or a post-installation M&V report, the data looks the same.

To ensure the actual savings are equal to our IGA estimate, we deliberately generate conservative IGA estimates and continue to identify additional energy savings opportunities throughout the life of the project. We are proud of our ability to consistently achieve actual energy savings that exceeds our IGA estimate in many projects.

Decide upfront if projects warrant an IGA

It’s true that implementing plug load control improves most project economics, but not all projects make sense – particularly in locations with extremely low kWh rates or in buildings where devices need to be on all day, every day.  ESCOs often prefer to do an upfront analysis before deciding whether or not to proceed with an IGA.

Bert’s Preliminary Savings Sheet provides ESCOs with an educated guess about potential energy savings without going on-site. We enter the building types, building sizes and building kWh rates into a proprietary modelling tool that calculates the expected number and types of plug and inline devices by building.  Based on the occupancy hours for each building, the tool estimates energy savings using standby load data from similar devices in previous Bert projects.

Assuming the numbers make sense and the project moves forward, Bert follows up with an on-site IGA.  Estimated counts are replaced with actual counts and savings are recalculated.

If you want additional information about implementing plug load control, please feel free to reference our FAQ guide or reach out to a Bert representative.